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Learning Outcomes
After studying this module, you shall be able to

Learn how to derive the matrix representation for the components,
Jy, jy ,J, and 32 of angular momentum J

Know the representations of the eigen states as column vectors on which the angular
momentum operators for each value of j can operate
Learn the Pauli spin matrices and their important properties

2. Introduction

The present module is in continuation of the preceding one, wherein starting from the
commutation relations of angular momentum operators, we deduced the expressions for the eigen

values of the diagonal operators J 2 and J 7z in the common basis represented by the state
| ] m> , where j and m labelling respectively the eigen values of J? and of J, . In this module, we

shall obtain the matrix representation for the components, jx , jy , jz and jz of the angular

momentum operator J . Considering a few specific values of the angular momentum, such as j=0,
Y, 1, and j=3/2, we shall write their matrix representations explicitly. It is remarkable to note that
the eigen value spectrum includes not only the integral but also the half-integral values of j. As
we already know half integral values of j describe the intrinsic spin of the particle, such as an
electron or a proton. We describe the spin matrices for the spin %2 particles, first introduced by
Pauli and briefly mention their important properties.

3. Angula Momentum (continued)

3.1 Matrix Representation of the Angular Momentum operator J in the | jm) Basis

The state vectors | jm> , form=-j to +j constitute the complete orthonormal basis for a

(2j+1) — dimensional subspaces, providing the angular momentum representation in which any
function of the angular momentum components will be represented by a matrix having elements

(j'm'|Al jm) . The rows of the matrix will be labeled by various values of j' and m' and the

columns by j and m. As we learnt from the preceding module, the basis states are the eigen states
of J2 and ], the matrices of these operators must be diagonal. In fact, just using the
Egs.(23.20a) and (23.40) from the previous module, we can write

(M| 32] im) = j(+ DN’ S Sy (24.1a)
(i3, ] im) =S ;S (24.1b)
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As far the operators J, and J_, taking the scalar product of I I 3 QI I E I I

| j'm’) with Eqgs.(23.32) and (23.33), we write the matrix
elements as

(im'[3.| jm)=c}, mS;6 (24.2a)

ji’m m+1
jm'[d | jm)=ci ns.8 (24.2b)
im "1

j'~'m’,m-1

The values of the constants c]f’m and cj,, can be determined by equating the norms of the two
sides in each of the Egs.(23.32) and (23.33). Thus from Eq.(23.32) we get

34| jm)= c}rm n jm+1)

Note that the bra conjugate to J.;| j,m)is (j,m[d_ ,since T =J_. The left hand side of
Eq.(24.2a) can be evaluated by using Eq.(23.28), i.e.,

(iml3_dy|jm) = (jm[J2=3F —ndz| jm) =[§(j +D-m-m?In?  (24.3)
We now equate the right hand sides of Eqs.(24.2a) and (24.3) to get

1/2

Chn =[G -m) (j+m+1)]

(24.4)

In the same way, we can evaluate ijm , using Eq.(24.2b). Here, since from Eq.(23.29)
3 3_|jm)y=32-32 +ni,|jm), we shall find
— / . 1/2
¢jm =[G +m)(j-m+D1/ (24.5)

The matrix elements of J, and J_ are thus determined completely. Using the relations,
Eq.(23.24), one can then express
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(3|37 jm) = j(j + D78} Sy
(i3, | jm) =mms .8

jji' mm’

(]3] jm) =[G~ m)(i+m+ D] 16,5y (24.72)
(I3 ] Jm) =[G+ m) (G =+ D216, 5y (24.70)

From the above equations, the matrix elements for j, and 7y are written as

(3| im) = 2o A0 - m)G o+ m+ T2 o man +1G + m) (- m+ D1 26 mo1

(53 m) = €1 -m) G-+ m+ DT 26m g =[G+ m) G- m+ D126, m-13
(24.8a, 24.8b)

From the above results, it is clear that the matrices representing the angular momentum operators
jx,jy,jz ) j+,j_, and 52 are all diagonal in j in the basis | jm> . Thus, for a given value of j

(j=0, 1/2,1,3/2 2 ) we have an infinite number of representations for these matrices,
having 2j+1 columns and rows labeled respectively by the values of m and m'. One can either
consider all these representations together to form a single representation of infinite rank , or
consider each of these representations of 2j+1 dimensions separately.

Here, for illustration, we just write the first four finite dimensional representations for j=0, 1/2 ,
1, 3/2 for the operators jx , jy , jz and jz . In writing the explicit matrices the convention is

followed of placing the element for m’=j in the first row, m’=j-1 in the second row etc., and m=j
in the first column, m=j-1 in the second column and so on,.

For the case, j =0, for which m=0, we have simply
ix=, dy=@,  I;=(0), iz=(0), (24.6)

where ( 0) is the null matrix of unit rank.

For j=1/2, we have
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Gx)m'=1/2.m=1/2 =0=x)m'=—1/2,m=—1/2
) m=1/2.m=—1/2 =1=x)m'=—1/2.m=1/2

Similarly, the elements for the operators jy , jz and 52 can also be written. In matrix
forms, we have:

A _n 0 1 A _n 0 -i
(1/2,m ‘]X|1/2,m>_2[1 OJ’ <1/2,m|~]y|1/2,m>—2(i OJ’
(24.7)

2
(1/2,m'|J[1/2,m) :n(l Oj, (1/2,m32[1/2,m) :?i(l 0)
20 -1 4 (0 1

For j=1, we have the possible values of m and m'=+1,0,-1. As a result we have 3x3 matrices.

1 0 0 -i O
<1,m'|jx|1,m>:% 0 1} <1,m’|jy|1,m>:%i -
0
1 1
0
0

amd Ltmy=n0 0 0, (1L,m'[3 2|1, m) = 2n?
0O 0 -1

Similarly, for j=3/2, we have the possible values of mand m'=+3/2,+1/2,-1/2,-3/2.
As a result, we have 4x4 matrices:

J3

(3/2,m’ jx|3/2,m>=g

0

0 0

2 J3|
0 0

0

R i —2i 0
(3/2,m'|J,|3/2,m") = | )
0 — /31

J3i 0

PAPER No. : TITLE




4] o athshala

(3/2,m’ jz|3/2,m>=2

(3r2.m3%sr2,m) =

0
1

0
0

(24.9)

As to the question regarding the state vectors on which the above matrix representations of

the components of angular momentum 5) are to operate, we know that the representation of an
arbitrary state |y/) with respect to the | jm) basis would be a column vector whose elements are

given by <jm|z//> . The dimensionality of the column vector would depend on the values that m

can take for a given j. For example, for j=1/2, m can take two values, +1/2 and -1/2 ; it has two
elements labeled by m=+1/2 and m=-1/2. The eigen vectors are given by :
la)=|j=1/2,m=+1/2) and |B)=|j=12m=-1/2).

In matrix notation, the eigen vectors are

a [alj, and S (ﬂl) (24.10)
a B2

Since these constitute an ortho-normal set and are also the eigen vectors of the operator J 7, the
simplest representation satisfying these conditions would be

(24.11)

In a similar way, for j=1, m can take the values +1, 0, -1, we would have three independent
elements. The eigen vectors are given by:

la)=|j=Lm=1) |8)=]i=1;m=0) l7)=|i=1,m=-1)  (2412)
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There will be, in general, three column vectors each of three elements. The simplest
representation constituting an orthonormal set of eigen vectors are:

(24.13)

Similarly, for a particle (or a system) of j=3/2, we have values of m =3/2, 1/2, -1/2, -3/2.
Thus we have a representation of an orthonornormal set of eigen vectors:

a= p= o= (24.14)

0 0
o 0
A 0
0 1

0
1
0
0

1
0
0
0

3.2 Pauli Spin Matrices

You all know that electrons, neutrons and protons, the building blocks of atomic and
nuclear physics have intrinsic spin ¥. The non-relativistic theory of spin % particles was first
developed by W. Pauli in 1927. Denoting the spin vector by s which is written as

§_Ng (24.15)
2
where the vector @ has the components o, , 7., 6, called Pauli spin matrices, are defined as

(01 (0 i) (1 o0 .
1 o) PTH o) TTlo a1 (24.19)

Compare these matrices with those given for j=1/2 in Eq.(24.7). Following properties of the Pauli
spin matrices can be easily verified:
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[oi,0,]1="2igy 0, (24.17a)
{o,,0,}=26;, (24.17p)

0,0, =0; tigy oy, (24.17c)
Tr(o,)=0, and det(c,)=-1 (24.17d,24.17e)

Note that while writing the above relations, we have replaced the X, y, z components of a by
1,2,3 respectively, denoted by, the indices i, j, or k, each taking the values 1,2,3.

The two basic spin=1/2 eigen states o and 3 , given by (24.10) correspond to the spin up (T
) and spin down (1) states respectively. They satisfy the ortho-normality relations:

(ala)=(B|B)=1; (a|B)=(B|a)=0 (24.18a),(24.180)

§2a=§n2a ; §2ﬂ=%n2ﬂ (24.19)

4
and

a= ga , (24.20)

Introducing the raising and lowering operators:
S, =S, iS, (24.21)
and using the general relations for j=1/2 and m=+1/2, we write

S,a=0 S.f=a (24.22a)
Ko =p S f=0 (24.22h)

From these relations, we can now write the operation of the x- and y- components on a and 8
states:

2 .M 2 o.M 3 in
Sxazzﬂ, Sxﬂ:Ea, Sya:Eﬁ )

(24.23)
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4, Summary

In this module, you have learnt to

Derive the matrix representation for the components, J X J y J ; and J 2 of angular

momentum J

Know the representations of the eigen states as column vectors on which the angular
momentum operators for each value of j can operate

Know the Pauli spin matrices and their important properties
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