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1. Learning Outcomes 

After studying this module, you shall be able to  

 Learn how to derive the matrix representation for the components, 

2ˆˆ,ˆ,ˆ JandzJyJxJ  of angular momentum J 

 Know the representations of the eigen states as column vectors on which the angular 

momentum operators for each value of j can operate 

 Learn the Pauli spin matrices and their important properties 

  

2. Introduction 

        The present module is in continuation of the preceding one, wherein starting from the 

commutation relations of angular momentum operators, we deduced the expressions for the eigen 

values of the diagonal operators zJandJ ˆ2ˆ  in the common basis represented by the  state 

mj , where j and m labelling respectively the eigen values of  𝑱̂𝟐  and of  𝑱̂𝒛 . In this module, we 

shall obtain the matrix representation for the components, 
2ˆˆ,ˆ,ˆ JandzJyJxJ  of the angular 

momentum operator 𝑱⃗̂ . Considering a few specific values of the angular momentum, such as  j=0, 

½,  1, and j=3/2, we shall write their matrix representations explicitly. It is remarkable to note that 

the eigen value spectrum includes not only the integral but also the half-integral values of j. As 

we already know half integral values of j describe the intrinsic spin of the particle, such as an 

electron or a proton. We describe the spin matrices for the spin ½ particles, first introduced by 

Pauli and briefly mention their important properties.  

3.   Angula Momentum  (continued) 

3.1 Matrix Representation of the Angular Momentum operator J in the  jm  Basis 

           The state vectors jm , for m= - j  to  +j constitute the complete orthonormal basis for a 

(2j+1) – dimensional subspaces, providing the angular momentum representation in which any 

function of the angular momentum components will be represented by a matrix having elements 

jmAmj ˆ  . The rows of the matrix will be labeled by various values of 𝒋′  𝒂𝒏𝒅  𝒎′ and the 

columns by j and m. As we learnt from the preceding module, the basis states are the eigen states 

of 𝑱̂𝟐   𝒂𝒏𝒅   𝑱̂𝒛 the matrices of these operators must be diagonal. In fact, just using the 

Eqs.(23.20a) and (23.40) from the previous module, we can write 

                              
)1.24(ˆ

)1.24()1(ˆ 22

bmjmJmj

ajjjmJmj

mmjjz

mmjj
















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As far the operators 𝑱̂+   𝒂𝒏𝒅  𝑱̂−, taking the scalar product of 

mj  with Eqs.(23.32) and (23.33), we write the matrix 

elements as 

                            
)2.24(ˆ

)2.24(ˆ

1,

1,

bcjmJmj

acjmJmj

mmjjjm

mmjjjm






















 

The values of the constants 𝒄𝒋𝒎
+      𝒂𝒏𝒅    𝒄𝒋𝒎

−  can be determined by equating the norms of the two 

sides in each of the Eqs.(23.32) and (23.33). Thus from Eq.(23.32) we get 

                                    1ˆ  jmjmcjmJ   

 Note that the bra conjugate to  JmjismjJ ˆ,,ˆ , since 𝑱̂+
† = 𝑱̂−. The left hand side of 

Eq.(24.2a) can be evaluated by using Eq.(23.28), i.e., 

             
2]2)1([ˆ2ˆ2ˆˆˆ  mmjjjmzJzJJjmjmJJjm        (24.3) 

We now equate the right hand sides of Eqs.(24.2a) and (24.3) to get 

                       
2/1)]1()[(  mjmjjmc                                                            (24.4) 

In the same way, we can evaluate 

jmc , using Eq.(24.2b). Here, since from Eq.(23.29) 

jmzJzJJjmJJ ˆ2ˆ2ˆˆˆ  , we shall find  

                      
2/1)]1()[(  mjmjjmc                                                            (24.5) 

The matrix elements of 𝑱̂+   𝒂𝒏𝒅  𝑱̂− are thus determined completely. Using the relations, 

Eq.(23.24), one can then express 

             

 

                       )ˆˆ(
2

1ˆ)ˆˆ(
2

1ˆ
 JJiyJandJJxJ .                     (24.6) 

     Let us now recapitulate the important results that we have arrived at: 
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)1.24(ˆ

)1.24()1(ˆ 22

bmjmJmj

ajjjmJmj

mmjjz

mmjj
















 

)7.24()]1()[(ˆ

)7.24()]1)([(ˆ

1,

2/1

1,

2/1

bmjmjjmJmj

amjmjjmJmj

mmjj

mmjj
















 

From the above equations, the matrix elements for  𝐉̂𝐱   𝐚𝐧𝐝  𝑱̂𝒚  are written as 

 

}1,
2/1)]1()[(1,

2/1)]1(){[(
2

1ˆ

}1,
2/1)]1()[(1,

2/1)]1)({[(
2

1ˆ





mmmjmjmmmjmjjj
i

jmyJmj

mmmjmjmmmjmjjjjmxJmj









                                                                                                                                      (24.8a, 24.8b) 

From the above results, it is clear that the matrices representing the angular momentum operators 

2ˆ,ˆ,ˆ,ˆ,ˆ,ˆ JandJJzJyJxJ  are all diagonal in j in the basis jm . Thus, for a given value of j 

( j=0,  1/2 , 1,3/2 ,2……..) we have an infinite number of representations for these matrices, 

having 2j+1 columns and rows labeled respectively by the values of m and m′. One can either 

consider all these representations together to form a single representation of infinite rank , or 

consider each of these representations of 2j+1 dimensions separately. 

 Here, for illustration, we just write the first four finite dimensional representations for j=0, 1/2 , 

1, 3/2  for the operators 
2ˆˆ,ˆ,ˆ JandzJyJxJ .   In writing the explicit matrices the convention is 

followed of placing the element for m′=j in the first row, m′=j-1 in the second row etc., and m=j 

in the first column, m=j-1 in the second column and so on,. 

       For the case,  j = 0,  for which m=0, we have simply 

    )0(2ˆ),0(ˆ),0(ˆ),0(ˆ  JzJyJxJ ,                 (24.6) 

where ( 0 ) is the null matrix of unit rank. 

 

For   j= 1/ 2,  we have 
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2/1,2/1)ˆ(12/1,2/1)ˆ(

2/1,2/1)ˆ(02/1,2/1)ˆ(





mmxJmmxJ

mmxJmmxJ
, 

Similarly, the elements for the operators 
2ˆˆ,ˆ JandzJyJ can also be written. In matrix 

forms, we have: 

            





























 











10

01

4

23
,2/12ˆ,2/1,

10

01

2
,2/1ˆ,2/1

,
0

0

2
,2/1ˆ,2/1,

01

10

2
,2/1ˆ,2/1





mJmmzJm

i

i
myJmmxJm

   (24.7) 

    For  j=1, we have the possible values of m and  m′=+1,0,-1. As a result we have 3×3 matrices. 















































































100

010

001
22,12ˆ,1,

100

000

001

,1ˆ,1

00

0

00

2
,1ˆ,1,

010

101

010

2
,1ˆ,1





mJmmzJm

i

ii

i

myJmmxJm

  (24.8) 

Similarly, for j=3/2, we have the possible values of m and 2/3,2/1,2/1,2/3 m . 

As a result, we have 4x4 matrices: 

         























0300

3020

0203

0030

2
,2/3ˆ,2/3


mJm x

     , 

        































0300

3020

0203

0030

2
,2/3ˆ,2/3

i

ii

ii

i

mJm y


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





















1000

0100

0010

0001

4

15
,2/3ˆ,2/3 22 mJm

                                   (24.9)

 

        As to the question regarding the state vectors on which the above matrix representations of  

the components of angular momentum  J
̂

 are to operate, we know that the representation of an 

arbitrary state   with respect to the jm basis would be a column vector whose elements are 

given by jm . The dimensionality of the column vector would depend on the values that m 

can take for a given j. For example, for j=1/2, m can take two values, +1/2 and -1/2 ; it has two 

elements labeled by m=+1/2 and m=-1/2. The eigen vectors are given by : 

2/1,2/12/1,2/1  mjandmj  . 

In matrix notation, the eigen vectors are 

                   


















2

1
,

2

1









 and                                               (24.10) 

Since these constitute an ortho-normal set and are also the eigen vectors of the operator zĴ , the 

simplest representation satisfying these conditions would be 

                 


















1

0
,

0

1
 and                                                       (24.11) 

In a similar way, for j=1, m can take the values +1, 0, -1, we would have three independent 

elements. The eigen vectors are given by: 

1;10;11;1  mjmjmj           (24.12) 


























3000

0100

0010

0003

2
,2/3ˆ,2/3


mJm z
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There will be, in general, three column vectors each of three elements. The simplest 

representation constituting an orthonormal set of eigen vectors are: 

    





















































1

0

0

,

0

1

0

,

0

0

1

                                                 (24.13) 

Similarly, for a particle (or a system) of j=3/2, we have values of m =3/2, 1/2,  -1/2, -3/2. 

Thus we have a representation of an orthonornormal set of eigen vectors: 

























































































1

0

0

0

,

0

1

0

0

0

0

1

0

0

0

0

1

                    (24.14) 

3.2  Pauli Spin Matrices 

          You all know that electrons, neutrons and protons, the building blocks of atomic and 

nuclear physics have intrinsic spin ½. The non-relativistic theory of spin ½ particles was first 

developed by W. Pauli in 1927. Denoting the spin vector by 𝒔⃗⃗  which is written as 

                                           


2
s                                                                               (24.15) 

where the vector 𝝈⃗⃗⃗ has the components 𝝈𝒙 , 𝝈𝒚, 𝝈𝒛, called Pauli spin matrices, are defined as 

               𝝈𝒙 = 








01

10
 ;       𝝈𝒚 = 







 

0

0

i

i
 ;         𝝈𝒛 = 









10

01
          (24.16) 

Compare these matrices with those given for j=1/2 in Eq.(24.7). Following properties of the Pauli 

spin matrices can be easily verified: 
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)17.24,17.24(1)(det,0)(

)17.24(,

)17.24(,2},{

)17.24(,2],[

edandTr

ci

b

ai

kk

kijkijji

ijji

kijkji

















 

        Note that while writing the above relations, we have replaced the x, y, z components of 𝝈 by  

1,2,3 respectively, denoted by, the indices i, j, or k, each taking the values 1,2,3. 

     The two basic spin=1/2 eigen states α and β , given by (24.10) correspond to the spin up (↑
)  𝒂𝒏𝒅   𝒔𝒑𝒊𝒏 𝒅𝒐𝒘𝒏 (↓) states respectively. They satisfy the ortho-normality relations: 

             )18.24(),18.24(0;1 ba   

             

)20.24(
2

ˆ,
2

ˆ

)19.24(
4

3ˆ;
4

3ˆ 2222













zz SS

and

SS

 

     Introducing the raising and lowering operators: 

                         yx SiSS ˆˆˆ                                                                      (24.21) 

and using the general relations for j=1/2 and m=±𝟏/𝟐, we write 

                      
)22.24(0ˆ

)22.24(ˆ0ˆ

bSS

aSS














 

From these relations, we can now write the operation of the x- and y- components on α and β 

states:      


2

ˆ,
2

ˆ,
2

ˆ,
2

ˆ,
2

ˆ,
2

ˆ  
 zzyyxx SSiS

i
SSS  

                                                                                                                       (24.23) 
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4.  Summary 

              In  this module, you have learnt to 

 Derive the matrix representation for the components, 
2ˆˆ,ˆ,ˆ JandzJyJxJ  of angular 

momentum J 

 Know the representations of the eigen states as column vectors on which the angular 

momentum operators for each value of j can operate 

 Know the Pauli spin matrices and their important properties 

  

 


