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1.  Learning Outcomes  (Times New Roman , size 14) 

After studying this module, you shall be able to  

 Know what symmetry of a physical law means 

 Learn a few familiar examples of geometrical continuous symmetries such as translations 

in space and time and be able to distinguish these from the dynamical symmetries…  

 Show that invariance of Hamiltonian of a physical system under space translations leads 

to the conservation of linear momentum of the system, while total energy is conserved if 

the Hamiltonian is invariant under translations in time 

2. Introduction 

       In this module we turn over to the topic of symmetries in quantum mechanics. After 

presenting a general overview of symmetries that exist in the physical laws or the phenomena 

occurring in nature, we shall find that a symmetry operation on a given physical system has 

associated with it the law of conservation of a dynamical observable. In other words, if the 

Hamiltonian of a physical system is invariant under a certain symmetry operation, it would then 

imply the constancy of a physical observable. In this module, we shall specifically study 

continuous geometrical symmetries such as translation (displacement) in space and time of a 

physical system. We shall find that conservation of the linear momentum of a physical system is a 

consequence of the translational invariance of its Hamiltonian. Similarly, the total energy of the 

system is conserved if the system is invariant under translations in time, 

3. Symmetries in Quantum Mechanics             

3.1 General view of symmetries 

         We are all familiar with the notion of symmetry from daily experience. A given object is 

said to display a symmetry if it is found to be invariant under a certain operation or a 

transformation. For instance, a sphere is symmetric because it is invariant under rotations; or a 

symmetrical vase of such a kind that if we reflect or turn it, it would look the same as before. 

Here our main interest, however, is to examine the symmetries that exist in the physical laws or 

the phenomena occurring in nature. For example, we all know that Newton’s law of motion, 𝑭⃗⃗ =

𝒎 𝒅
𝟐𝒓⃗ 

𝒅𝒕𝟐
⁄   , is symmetrical under translation in space. What it means is that if one makes a 

transformation, arrr


 , where the vector a is a constant displacement, then 𝒅
𝟐𝒓’⃗⃗  

𝒅𝒕𝟐
⁄   

=
𝒅𝟐(𝒓⃗ + 𝒂⃗⃗ )

𝒅𝒕𝟐
⁄    = 𝒅

𝟐𝒓⃗ 
𝒅𝒕𝟐

⁄ =  𝑭⃗⃗ , implying thereby that the law remains unchanged under 

translation in space. Similarly, one can check that under translation in time, i.e., t→ 𝒕’= t+α, 

where α is a constant displacement in time, the Newton’s law remains unchanged that is to say 

that displacement in time will have no effect on the physical law. To express in simple language, 

it says that we can move our entire physical apparatus from one place to another or carry out the 

observations at a later time without affecting the outcome of the experiment. Another important  
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property that Newton’s law possesses is that it is represented by a vector equation: 𝑭⃗⃗ = 𝒎 𝒂⃗⃗ . If, 
therefore, one rotates a vector or equivalently rotate the coordinate system about a given axis, the 

vector, 𝑭⃗⃗ → 𝑭′⃗⃗  ⃗ and correspondingly the acceleration vector 𝒂⃗⃗ → 𝒂⃗⃗ ′. Thus, for instance, if we 

rotate the coordinate system about z-axis by an angle 𝜽, then the component x of the vector 𝑭⃗⃗  
transforms as 𝑭𝒙

′ = 𝑭𝒙 𝐜𝐨𝐬(𝜽) + 𝑭𝒚 𝐬𝐢𝐧 (𝜽) and so does the x-component of the acceleration 

vector, i.e., 𝒂𝒙
′ = 𝒂𝒙 𝐜𝐨𝐬(𝜽) + 𝒂𝒚 𝐬𝐢𝐧(𝜽). In other words, the law also remains covariant under 

rotations. These simple symmetry operations of geometrical translations and rotations manifest 

that ordinary space is homogeneous and isotropic. 

              The symmetries of the physical laws are found to be more interesting and exciting when 

we come to quantum mechanics. In quantum mechanics, there is an intimate relationship between 

the law of conservation of a dynamical observable and the corresponding symmetry operation of 

the physical system. We shall see that if the Hamiltonian of a physical system is invariant under a 

certain symmetry operation, it would then correspond to the constancy of a physical observable. 

              The symmetries may be broadly categorized in two groups: (i) the geometrical 

symmetries associated with space and time and (ii) the dynamical symmetries which are 

associated with the particular features of the interaction involved. A typical example of a 

dynamical symmetry is the one observed in hydrogen atom where the energy level of the atom 

exhibits 𝒏𝟐 −  fold degeneracy ( n being the principal quantum number of the atom), which is a 

consequence of a special symmetry of the coulomb interaction. The continuous symmetries 

associated with displacement in space and time and rotation in space are to be distinguished from 

the discrete symmetries which are defined by the operations of inversion of space and time. 

While the continuous symmetries are known to be valid universally, independent of the nature of 

interaction involved, the same does not hold in the case of discrete symmetries. In the next 

module, we shall discuss these in some detail.  

            There is yet another type of symmetry, i.e., the permutation symmetry which has a 

central role in quantum mechanics. It turns out that systems containing N identical particles are 

either totally symmetrical under the interchange of any pair, in which case the particles are known 

to satisfy Bose-Einstein statistics, hence called bosons, or totally antisymmetrical, in which case 

they are said to satisfy Fermi-Dirac statistics and called fermions. You must have learnt in your 

undergraduate course that half-integer spin particles are fermions whereas the integer spin 

particles are bosons and may have also studied the basic elements of Bose-Einstein and Fermi-

Dirac statistics. 

 3.2  Spatial translations and conservation of linear momentum 

          Let us study to analyze the connection between translational invariance in space and the 

conservation of linear momentum of a system. Consider the simple case of a system consisting of 

a single particle described at a given time by the spatial wave function ψ(𝒓⃗ ). The translation of a 

point particle located at 𝒓⃗  with momentum 𝒑⃗⃗  is defined by the operation 

               𝒓⃗ → 𝒓′⃗⃗⃗  = 𝒓⃗ + 𝒂⃗⃗  ,            𝒑⃗⃗ → 𝒑′⃗⃗  ⃗= 𝒑⃗⃗                                                                      (20.1) 
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The vector 𝒂⃗⃗  is the constant displacement vector by which the particle is displaced. Such a 

displacement can also be viewed equivalent to the one in which the system is undisturbed but the 

origin of the coordinate system is displaced by an amount -𝒂⃗⃗  .The translated wave function, 

which  may be defined by simply allowing the particle to have its new position 𝒓⃗ ′ , is the same as 

the original wave function at 𝒓⃗ , i.e., 

                      𝝍′(𝒓⃗ ′) = 𝝍′(𝒓⃗ + 𝒂⃗⃗ ) = 𝝍(𝒓⃗ )                                                                      (20.2) 

The translated wave function at the point 𝒓⃗  is then obtained by moving both the points by - 𝒂⃗⃗  : 

                  𝝍′(𝒓⃗ ) = 𝝍(𝒓⃗ − 𝒂⃗⃗ )                                                                                          (20.3) 

The action of transforming 𝝍(𝒓⃗ ) 𝒊𝒏𝒕𝒐  𝝍′(𝒓⃗ ) in quantum mechanics is expressed as an operator, 

which is accomplished by expanding Eq.(20.3) in Taylor’s series: 
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                        (20.4) 

The operator 


may be expressed through the momentum operator 





ip̂  to get 

                     )()ˆ.exp()(' rpa
i

r





                                                                         (20.5) 

This shows that the momentum operator is directly connected with translations in space. For 

small infinitesimal translations, we may expand the exponential term and write 

                    )()ˆ.1()(' rpa
i

r





  ,                                                                           (20.6)       

so that p

ˆ may be regarded as the generator of infinitesimal translations. In Eq.(20.5), we have 

thus obtained the operator for translations 

                             )ˆ.(exp)(ˆ pa
i

aU





 ,                                                                      (20.7) 

which transforms the wave function ψ to 𝝍′ as 

                            )()(ˆ)()( raUarr


                                                            (20.8) 
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To see how a position dependent operator, say, )(ˆ rA


 is transformed, we have to remember that 

)()(ˆ rrA


  just transforms like a wave function. Thus 

                      

)(ˆ1ˆ)(ˆ)(ˆ

)}()(ˆ{)(ˆ)()(ˆ

rUUrAaU

rrAaUrrA












                                                       (20.9) 

Comparison with the left hand side shows that operators are transformed as 

                           
1ˆˆˆˆ  UAUA                                                                                       (20.10) 

This, in fact, is a general result, which we have studied in the previous module. 

Using the power series expansion in Eq.(20.7), one can immediately show that 

            𝐞𝐱𝐩(𝑻̂)
†

= 𝐞𝐱𝐩 (𝑻̂†)       ,            exp(𝑻̂)−𝟏 = 𝐞𝐱𝐩 (−𝑻̂)  ,                               (20.11) 

where the operator ap
i

T



.ˆˆ   . Since p


ˆ is a Hermitian operator, its product with imaginary 

number changes sign under Hermitian conjugation and we get 

           𝑼̂†(𝒂⃗⃗ ) = 𝑼̂−𝟏(𝒂⃗⃗ ) = 𝑼̂(−𝒂⃗⃗ )                                                                                (20.12) 

The operator 𝑼̂(𝒂⃗⃗ ) is therefore unitary so that the norm of the wave function is conserved. 

3.3 Translational Invariance 

          A physical system is said to be invariant under translations if the Hamiltonian does not 

change under translations, i.e., 

               𝑯̂′(𝒓⃗ ) = 𝑯̂(𝒓⃗ − 𝒂⃗⃗ ) = 𝑯̂(𝒓⃗ )                                                                             (20.13) 

According to Eq.(20.10), it follows that 
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                                                                    (20.14) 
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which shows that the Hamiltonian commutes with the operator of translation for arbitrary 𝒂⃗⃗ . 
Using the expression, Eq.(18.7), it is clear that 𝑼̂(𝒂⃗⃗ ) will commute with the operator 𝑯̂ for any  

𝒂⃗⃗ , provided the momentum operator p

ˆ commutes. This leads to the condition 

                               0ˆ,ˆ pH                                                                                           (20.15) 

3.4  Many Particle System 

    The above results can be easily generalized to a system of many particles. We shall find that 

the translation of a many particle system leads to the concept of total momentum. Translating a 

system of N particles by the displacement 𝒂⃗⃗  is expressed as 

             ).........,,.........2,1().......,..........,2,1( aNrararNrrr


              (20.16) 

As a result, the transformation of the many body wave function is given by 

       )......,,.........2,1()....,..........,2,1( aNrararNrrr


                        (20.17) 

so that applying the translational operators for each coordinate separately, we write Eq.(20.17) as 

     )......,,.........2,1()(ˆ.......)(2
ˆ)(1

ˆ)....,..........,2,1( NrrraNUaUaUNrrr


  ,    (20.18) 

where the operator 𝑼𝒊̂(𝒂⃗⃗ ) acts on coordinate i: 
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                                                     (20.19) 

Eq.(18.18) can thus be expressed using Eq.(20.19) as 
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(20.20) 

where P
̂

is the total momentum operator;   



N

i
ipP

1

ˆˆ 
                                                        (20.21) 

Thus for a system of N particles, total momentum operator appears as the operator for 

simultaneous infinitesimal operations of all particles. If the Hamiltonian of the system is invariant  
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under translations, then it follows that   0ˆ,
ˆ






 HP


   , with the result that total momentum of a 

system of particles is a constant of motion. 

          For example, consider a Hamiltonian of the form 

                   
 


N

i

N

ji
jrirV

im

ip
H

1 1

),(
2

1

2

2ˆ
ˆ 

,                                                              (20.22) 

where the two body potential depends only on the relative co-ordinates, jrir


 , and therefore, 

under constant displacement of each co-ordinate, the two body potential remains invariant. Since 

the kinetic energy term does not involve any dependence on the positions of the particles, the 

Hamiltonian should be invariant under simultaneous translations of all particles. The total 

momentum of the system is therefore a constant of motion. 

       It should be noted that with the definition, Eq.(20.21), given for the total momentum, the 

canonically conjugate coordinate to the total momentum for the N particle system is the centre of 

mass vector:         








N

i
im

N

i
irim

R

1

1




                                                                                         (20.23) 

One can then easily check that similar to the commutation relation   ijijpir , obeyed by the 

components of position and momentum of a single particle, we would have here the 

corresponding commutation relations between the Cartesian components, jPandiR̂ , viz., 

                                     ijijPiR ˆ,ˆ                                                                              (20.24) 

3.4   Displacement in Time:  Conservation of Energy 

               One can study, in similar fashion, translation in time of the wave function , ψ(𝒓⃗ , 𝒕) 

describing a particle .The wave function translated in time, which  may be defined by simply 

allowing the particle to have its new time coordinate 𝒕 → 𝒕′ = 𝒕 + 𝝉 , is the same as the original 

wave function at time t, i.e., 

                      𝝍′(𝒓⃗ , 𝒕′) = 𝝍′(𝒓⃗ , 𝒕 + 𝝉) = 𝝍(𝒓,⃗⃗ 𝒕)                                                           (20.25) 

The translated wave function at the time t is then obtained by moving both the time coordinates, t 

and 𝒕′ by - 𝝉 : 
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                  𝝍′(𝒓⃗ , 𝒕) = 𝝍(𝒓⃗ , 𝒕 − 𝝉)                                                                                   (20.26) 

The action of transforming 𝝍(𝒓⃗ ) 𝒊𝒏𝒕𝒐  𝝍′(𝒓⃗ ) in quantum mechanics is expressed as an operator, 

which is accomplished by expanding Eq.(20.26) in Taylor’s series: 
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The operator 𝝏 𝝏𝒕⁄  may now be expressed as


Hi ˆ
, so that substituting in Eq.(20.27), we have 

                  ),()
ˆ

exp(),( tr
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tr








                                                               (20.28) 

We thus find that displacement in time, which is also a continuous transformation is also unitary. 

The effect of the displacement 𝝉 on the wave function ψ(t) is given by 

                       ),()(ˆ),( trUtr


  ,                                                              (20.29) 

where                 )
ˆ

exp()(


Hi
U


                                                                      (20.30) 

What it means is that events corresponding to time t in ψ, correspond to time (t+𝝉) in 𝝍′. 

  The invariance of the Hamiltonian under translations in time requires that 

                             𝑯̂′(𝒕) = 𝑯̂(𝒕 − 𝝉) = 𝑯̂(𝒕)                                                    (20.31a) 

i.e.,                 HUHU ˆ)(1ˆˆ)(ˆ              or     )(ˆˆˆ)(ˆ  UHHU  .               (20.31b) 

Now 𝑯̂ commutes with 𝑼̂  if 𝑯̂ is independent of t. The time independence of 𝑯̂ means that the 

total energy of the system is conserved. It thus follows that the total energy of the system is 

conserved if the system is invariant under translations in time. 
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4. Summary 

        After studying this module, you would be able 

 Define the symmetry of a physical law and come to know of different types of 

symmetries in quantum mechanics 

 Learn a few familiar examples of geometrical continuous symmetries such as translations 

in space and time, their connections with homogeneity of space and time and be able to 

distinguish these from the dynamical symmetries 

 Show that invariance of Hamiltonian of a physical system under space translations leads 

to the conservation of linear momentum of the system, while total energy is conserved if 

the Hamiltonian is invariant under translations in time 

 

 

 

 


