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Learning Outcomes  
After studying this module, you shall be able to  

• Know the important role the study of harmonic oscillator plays in diverse areas in 

physics  

• Learn some general properties from the given form of the harmonic oscillator potential 

• Learn to write the Hamiltonian in the operator form (raising and lowering operators) 

and to deduce the expression for the energy spectrum 

• Learn to deduce the expression for the energy eigen-states of the Hamiltonian 

• Show how this representation of the states can be expressed in terms of Hermite 

polynomials 
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1.Introduction  

The study of the quantum mechanical properties of linear harmonic oscillator assumes its importance from the 

fact that it provides the basis to analyze a wide variety of physical phenomena such as the vibrations of the 

atoms of a molecule about their equilibrium positions, the oscillations of atoms or ions of a crystalline lattice etc. 

In the first module we saw that it was the study of the behavior of these oscillators at thermal equilibrium (black 

body radiation), which led  Planck to introduce the hypothesis of quantization of energy. Whenever one has to 

study the behavior of a physical system in the neighborhood of a stable equilibrium position, one has to deal 

with the equations which, in the limit of small oscillations, are those of a harmonic oscillator In your 

undergraduate course on quantum mechanics you must have studied the problem of linear harmonic oscillator by 

solving the time independent Schrodinger’s second order differential equation. 

2.  The Linear Harmonic Oscillator 

2.1. General Properties of a Linear Harmonic Oscillator 

Let us start by recapitulating some important properties of a simple harmonic oscillator. Classically, the 

dynamical equation which governs the motion of a harmonic oscillator is 

                                                   

xk
dx

dV

dt

xd
m 

2

2

                                                                          (17.1) 

and the solution of this equation is given by   x = a cos(ω t- φ), where a denotes the amplitude and  ω=  is 

the angular frequency of the vibrating particle.  

The kinetic energy of this particle,  

                                                        K = m

p

dt

dx
m

2

22

2

1










 

 and the total energy is  

                                                          E=  K + V = 

22

2

1

2

2
xm

m

p


.                                                    (17.2) 

In quantum mechanics, the classical quantities x and p are replaced by the corresponding operators in terms of 

which the Hamiltonian operator of the system is expressed as 
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2ˆ2

2

1

2

2ˆˆ xm
m

p
H 

                                                           (17.3) 

For a time-independent Hamiltonian representing a conservative system, we have the eigenvalue equation: 

                                                                  
 EH ˆ

.                                                                   (17.4) 

When expressed in the {|x>} representation, this equation is written as: 

                                             

)()(2ˆ2

2

1

2

2

2

2
xExxm

dx

d

m
 


















                                               (17.5) 

This is the second order differential equation, which you must have studied and solved to get the solutions for 

the eigenvalues and Eigen fnctions of the oscillator. Here we mention only the following general properties that 

can be deduced based on the form of the harmonic oscillator potential, V(x) = kx2. 

2.2 Eigenvalues of the Hamiltonian  (Operator Method) 

We have studied in the preceding module that there are many representations, connected by unitary 

transformations, in which the wave functions and operators can appear in quantum mechanics. In Dirac’s 

formulation of quantum theory, the central role is played by the commutation relations between linear Hermitian 

operators, corresponding to the dynamical variables. Here we shall use Dirac’s method which essentially 

consists in finding suitable operators with which one can generate all the eigen vectors of the Hamiltonian 

without making reference to any particular representation. 

 Corresponding to the Hamiltonian given by Eq.(17.3), let us introduce the operators 

                                                   

 pixm
m

a ˆˆ
2

1
ˆ 







                                                            (17.6)  

Since 
pandx ˆˆ

 are Hermitian operators,  aanda ˆˆ
are adjoints of each other, i.e., 


 aa ˆˆ

  and 


 aa ˆˆ

. Using the commutation relation, 
ipx ]ˆ,ˆ[

, one can easily verify that  aanda ˆˆ
 satisfy the 

commutation relation 

                                                           
1̂]ˆ,ˆ[  aa

                                                                            (17.7) 

Also writing the operators 
pandx ˆˆ

 in terms of  aanda ˆˆ
, using Eq.(17.6), we get 



 

6 
 

 

Physics 
 Quantum Mechanics-1 

 Linear Harmonic Oscillator (Operator Method) 

 
 

 

                                                              

)8.17()ˆˆ(2
2

1
ˆ

)8.17(]ˆˆ[
2

ˆ

baam
i

p

aaa
m

x

















 

Substituting these expressions for pandx ˆˆ
 in  Eq.(17.3) for the Hamiltonian, one can easily show that 

                                           
)

2

1
(

)
2

1
ˆˆ()

2

1
ˆˆ()ˆˆˆˆ(

2
ˆ





N

aaaaaaaaH












            (17.9) 

where  aaN ˆˆˆ
 .                                                                                                                         (17.10) 

In expressing the Hamiltoian, Eq,(17.9), in alternative forms we make use of the commutation relation, 

Eq.(17.7). Note that the adjoint of the operator N̂  , i.e., 

                                                       NaaaaN ˆˆˆ)ˆ()ˆ(ˆ 





                                           (17.11) 

showing that it is Hermitian. In fact, by relating the Hamiltonian to the number operator N̂ through Eq.(17.9),  

the problem of determining the eigenvalues and eigenvectors of the Hamiltonian is essentially reduced to the 

problem of finding the eigenvalues and eigenvectors of the operator N̂ .  

Let us calculate the commutator of N̂ with  aanda ˆˆ
: 

                                 aaaaaaaaaaaN ˆˆ]ˆ,ˆ[]ˆ,ˆ[ˆ]ˆ,ˆˆ[]ˆ,ˆ[
                              (17.12) 

Similarly, 

                                 aaaaaaaaaaaN ˆˆ]ˆ,ˆ[]ˆ,ˆ[ˆ]ˆ,ˆˆ[]ˆ,ˆ[
                                 (17.13) 

In simplifying the commutators in Eqs. (17.12) and (17.13) we use the commutator, Eq.(17.7) and the relations   

0]ˆ,ˆ[]ˆ,ˆ[  aaaa
 . 

Let the ket n represent a normalized eigenvector of N̂ belonging to the eigenvalue n, i.e., 
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                                                                 nnnN  ˆ
                                                                   (17.14) 

Now using Eq.(17.12), we get 

                  nannanNanaN

nanaN









ˆ)1(ˆˆˆˆˆ

ˆ]ˆ,ˆ[

,                                                              (17.15) 

which shows that na ˆ is an eigenvector of N̂  belonging to the eigenvalue (n-1). In the same way, na 2ˆ  

can be shown to be an eigenvector of  N̂ having the eigenvalue (n-2). In general, n
ra )ˆ(

is an eigenvector of 

N̂ with eigenvalue (n-r). Also note that the eigenvalue 

                                        
0

2
ˆ

ˆˆˆ





na

naannNnn





 ,                                                            (17.16) 

as the norm of a vector is always positive definite. In this case,( na ˆ ) can not be negative. Thus it follows 

that the series 

                                
,......)ˆ(..,..........,.........2)ˆ(,ˆ, n

rananan                                      (17.17) 

must terminate, as otherwise it would lead to a state for which n
sa )ˆ(

 would give the eigenvalue, (n-s), 

which is negative. As a general property of a linear harmonic oscillator having a potential V(x) , we have 

also noted in the earlier subsection that the eigenvalues are always positive. 

 Let the last term in the series (9.17) generate the state 0  such that 

                                                         
00ˆ  a

                                                                             (17.18) 

It, therefore, implies that states given in the series (9.17) correspond to the eigenvalues 

                                                         n, (n-1), (n-2),……………,2, 1, 0.                                             (17.19) 

Similarly, starting from the commutation relation, Eq.(9.13), it is straight forward to show that 
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nannanNanaN

nanaN









ˆ)1(ˆˆˆˆˆ

ˆ]ˆ,ˆ[

                       (17.20) 

In general,                                     n
rarnn

raN  )ˆ()()ˆ(ˆ
                                                   (17.21) 

We thus have the series representing the states 

                                        
,......)ˆ(..,..........,.........2)ˆ(,ˆ n

ranana                                       (17.22) 

corresponding to the eigenvalues 

                            (n + 1), (n + 2),……….,(n + r),…….+  

Thus the eigenvalue spectrum of the operator N̂  is given by 

                               n = 0, 1, 2,…………..+  

Referring back to the expression Eq.(9.9), for the Hamiltonian, 
)

2

1ˆ(ˆ  NH
, and operating on the ket 

n , we get 

                                             nnEnnnNnH   )2/1()2/1ˆ(ˆ 
,                   (17.23) 

where the energy eigenvalues, 

                                              
)2/1(  nnE

 , n=0,1,2…..                                                          (17.24) 

2.2.1   Interpretation of the operators â
 and â

: 

By now, it must be clear that if we start with an eigenstate n of Ĥ corresponding to the eigenvalue 

)2/1(  nnE
, application of the operator â

gives an eigenvector associated with the eigenvalue 

   )2/1(1 nnE
, and similarly application of â

gives the  energy, 
   )2/1(1 nnE

.  
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 For this reason the operator â
is said to be a lowering (or destruction) operator and â

is called a raising 

(or construction) operator. 

2.3  Eigenstates of the Hamiltonian; the basis vectors  n : 

The vector 0  associated with n=0 satisfies the property, Eq.(17.18), 

                                                                               
00ˆ  a

 

Let us assume the state 0 to be normalized. Now the state 1 , which corresponds to n=1, is proportional 

to 0ˆ a
. Writing 

                                                        0ˆ11   ac
                                                                                  (17.25) 

To determine , we require the vector 1 to be normalized, so that 

                                         0)1ˆˆ(0
2

10ˆˆ0
2

111   aacaac
                         (17.26) 

Since 0  is a normalized eigenstate of  aaN ˆˆˆ
with the eigenvalue zero, we get 

                                            
1

2
111  c

                                                                                   (17.27) 

Choosing the phase of 1 relative to 0  such that  is   real and positive, we have =1. As a result                                        

0ˆ1  a
                                                                    (17.28) 

In a similar fashion, we can construct 2  from 1 : 

                                                     1ˆ22   ac
                                                                            (17.29) 
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Requiring 2  to be normalized and choosing the phase such that  is real and positive, we have:                         

1
2

22

1)1ˆˆ(1
2

21ˆˆ1
2

222





c

aacaac 

                                                              (17.30) 

Thus                                             
0

2)ˆ(
2

1
1ˆ

2

1
2   aa

                                                (17.31) 

This procedure can be easily extended. Thus the normalized state vector n  is obtained if we know the state 

1n (which is normalized): 

                                                   1ˆ  nancn 
                                                                          (17.32) 

 Since                                           
1

2

1ˆˆ1
2





ncn

naanncnn 

                                               (17.33) 

We get                                          n
nc

1


.                                                                                          (17.34) 

We can thus obtain n  in terms of 0  by successively relating the eigen vectors to the lower states, i.e., 

                                          

0)ˆ(
!

1

0)ˆ(
2

1
...............

1

11

.........2
2)ˆ(

1

11
1ˆ

1







na
n

na
nn

na
nn

na
n

n













                           (17.35) 

Since the Hamiltonian Ĥ is Hermitian, the set of eigen vectors n  corresponding to n varying from 0 to +  

constitute a complete orthonormal set and thus defines a representation, called the occupation number 

representation. The operator N̂ is diagonal in this representation. 
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                                                nnnnNn  ,
ˆ 

                                                                             (17.36) 

Also,                           1

1!)1()1ˆˆ(
!

1
0

1)ˆ()1ˆˆ(
!

1

0
1)ˆ()ˆˆ(

!

1
0)ˆ()ˆ(

!

1
ˆ









nn

nnaa
n

naaa
n

naaa
n

naa
n

na







  (17.37) 

So that                          1,ˆ  nnnnan 
                                                   (17.38) 

In a similar way,                 1,)1(ˆ

1)1(ˆ





nnnnanand

nnna





                      (17.39) 

2.3.1 Matrix Representation of the operators 
)ˆ()ˆ(,)ˆ( Nandaa   

The operators,  
)ˆ()ˆ(,)ˆ( Nandaa    can thus be written in the matrix forms as: 



























.......

..............40000

...............03000

...............00200

..............00010

)ˆ(a

       






























....................

................4000

.................0300

.................0020

.................0001

.................0000

)ˆ(a

   (17.40) 

                             




























....

..............40000

.............03000

...............00200

...............00010

................00000

)ˆ(N

                                                  (17.41) 
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2.4  Wave functions associated with the stationary states 

 We now show how the linear harmonic oscillator eigenfunctions in the position representations can be obtained 

by using the operators  
.ˆˆ  aanda
 

According to Eq.(9.18),       
00ˆ  a

 

Using the definition of â , cf., Eq.(9.6), we write 

                       

  00ˆˆ
2

1
 


pixm

m  

In the 
}{ x

representation, where 0)(0  xx 
 , the above equation is written as 

                                     

0)(0
2

1









 x

dx

d
xm

m





                                                             (17.42) 

Or                              

0)(0 







 x

dx

d
x

m




                                                                                    (17.43) 

Eq.(17.43) is the first order differential equation. Its general solution is 

                                                        

















2/22exp0

2

2
exp0)(0

xN

x
m

Nx








                                                    (17.44) 

where the symbol 0/ Nandm  
 is a normalization constant chosen to be real and such that 

)(0 x
 is normalizd to unity :                 

4/12/1

0 
























 m
N

                                             (17.45) 

The other eigenfunctions can be obtained by using  the operator â
,  given in Eq.(17.6): 
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)(0
2

1

!

1

0)ˆ(
!

1
)(

x

n

dx

d

m
x

m

nn

nax
n

nxxn























 ,                       (17.46) 

2.4.1 Identifying the eigenfunctions with Hermite polynomials 

In order to identify that the eigenfunctions obtained in Eq.(17.46), are indeed related to the Hermite polynomials 

which we obtain by solving the second order differential equation for the linear harmonic oscillator, we have to 

go back to the representation of Hermite polynomials:          

                      






















 

2/2exp)2/2exp(

)1()(
22












n

d

d

e
nd

nd
en

nH

                                                     (17.47) 

Now defining the variable, 
xd

d

md

d
thatsox

m
x











 and writing the ground state  

)2/2exp()2/2exp(0)(0 



 








 N

 , we re-express Eq.(17.46) as 

                                            

)()2/2exp(

2/1

!2
)( 




 nH

nnn 















                                (17.48) 

This equation, which gives the normalized linear harmonic oscillator eigenfunctions, is identical to the one 

which one gets on solving the second order differential equation. 

4.  Summary 

       After studying this module you should be able to 

 Explain the important role the study of harmonic oscillator plays in diverse areas in physics  

 Learn some general properties from the given form of the harmonic oscillator potential 

 Learn to write the Hamiltonian in the operator form (raising and lowering operators) and to deduce the 

expression for the energy spectrum 
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 Learn to deduce the expression for the energy eigen-states of the Hamiltonian 

 Show how this representation of the states can be expressed in terms of Hermite polynomials 

 

 

 

 


